Computational complexity of sentences over fields
نویسندگان
چکیده
منابع مشابه
Computational Complexity of Fourier Transforms Over Finite Fields*
In this paper we describe a method for computing the Discrete Fourier Transform (DFT) of a sequence of n elements over a finite field GF(pm) with a number of bit operations 0(nm log(nm) ■ P(q)) where P(q) is the number of bit operations required to multiply two q-bit integers and q = 2 log2« + 4 log2m + 4 log2p. This method is uniformly applicable to all instances and its order of complexity is...
متن کاملComputational Complexity of Multi-quantifier Sentences
We study the computational complexity of polyadic quantifiers in natural language. This type of quantification is widely used in formal semantics to model the meaning of multi-quantifier sentences. First, we show that the standard semantic constructions that turn simple quantifiers into complex ones, namely Boolean operations, iteration, cumulation, and resumption, are tractable. Then, we provi...
متن کاملComputational Complexity of Checking Identities in 0-simple Semigroups and Matrix Semigroups over Finite Fields
In this paper we analyze the so called word-problem for (finite) combinatorial 0-simple semigroups and matrix semigroups from the viewpoint of computational complexity.
متن کاملComputational linear algebra over finite fields
∗Université de Grenoble; Laboratoire Jean Kuntzmann, (umr CNRS 5224, Grenoble INP, INRIA, UJF, UPMF); [email protected]; 51, rue des Mathématiques, BP 53X, F-38041 Grenoble, France. †INRIA, Université de Grenoble; Laboratoire LIG (umr CNRS 5217, Grenoble INP, INRIA, UJF, UPMF); [email protected]; ENSIMAG Antenne de Montbonnot, 51, avenue Jean Kuntzmann, F-38330 Montbonnot Saint-...
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Computation
سال: 2008
ISSN: 0890-5401
DOI: 10.1016/j.ic.2008.04.001